Leveraging Native Nutrient Dense Plants in Development of Market-led Instant Fortified Grain Foods

Mario G Ferruzzi1, Hawi Debelo2, Cheikh Ndiaye2,3, Hugo De Groote4, Djibril Traore3, John R.N. Taylor5 Betty Bugusu2 & Bruce R. Hamaker2

1North Carolina State University, Kannapolis, USA
2Purdue University, West Lafayette, USA
2Institut the Transformation Alimentaire, Dakar, Senegal
3International Maize and Wheat Improvement Centre (CIMMYT), Nairobi, Kenya
4University of Pretoria, Pretoria, South Africa
Who we are and where we work

Senegal
Mali
Niger
Kenya
Malawi
Prevalence of micronutrient deficiency in Sub-Saharan Africa

Vitamin A Deficiency

190 million (33.3%)
Pre-school age children

19.1 million (15.3%)
Pregnant women

Vitamin A deficiency causes 600,000 early childhood deaths and blindness in 500,000 children each year

Iron Deficiency

273,000 deaths: 45% in Southeast Asia, 31% in Africa (2004 report)

Zinc Deficiency

> 450,000 deaths annually in children <5 years of age (worldwide)

Sources:
WHO, 2009
Current Strategies to Alleviate Micronutrient Deficiencies

Supplementation

Commercial Fortification

Dietary Diversification

Biofortification

Can this translate to a presence in the market?

Our aim is to create successful models using food and nutrition-related technologies that:

- Expand millet and sorghum markets in urban/rural in Senegal, Kenya and Niger through application of food technology
- Improve nutritional quality of products
- Enabling a market-pull for fortification
- Support entrepreneurism
Opportunities with Vitamin A for developing countries

Two forms of vitamin A

- Preformed vitamin A
- Provitamin A carotenoids

Consumption patterns and losses

- Plant foods 78-88%
- 12-22%

- ~$23B of post harvest losses in Fruits and Vegetables
- ~4B in post harvest losses in cereal

(FAO/NRI 2009)
Indigenous African proVA carotenoid-rich plants may contribute significant amounts of shortfall nutrients

<table>
<thead>
<tr>
<th>Leafy Vegetables</th>
<th>Vitamin A (ug RE)</th>
<th>Zn (mg/g)</th>
<th>Fe (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranthus sp.</td>
<td>327</td>
<td>0.02-8.4</td>
<td>0.3-3.8</td>
</tr>
<tr>
<td>Arachis hypogea</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bidens pilosa</td>
<td>301-985</td>
<td>0.9-2.6</td>
<td>162-340</td>
</tr>
<tr>
<td>Brassica sp</td>
<td>0.9-1.3</td>
<td></td>
<td>27-31</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>1090.8</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td></td>
<td>1.4-18.5</td>
<td>2.2-6.1</td>
</tr>
<tr>
<td>Cleome sp.</td>
<td>1200</td>
<td>0.6-0.8</td>
<td>2.6-2.9</td>
</tr>
<tr>
<td>Cucurbita pepo</td>
<td>194</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>447.6</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Galinsoga parviflora</td>
<td></td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>Ipomeoa batatas</td>
<td>103-980</td>
<td>0.03-3.1</td>
<td>0.6-1</td>
</tr>
<tr>
<td>Manihot esculenta</td>
<td>1970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daucus carota</td>
<td>3057.3</td>
<td>2.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Senna occidentalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solanum sp</td>
<td>1070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonchus oleracea</td>
<td>985</td>
<td>0.5</td>
<td>2.7</td>
</tr>
<tr>
<td>Vernonia sp.</td>
<td></td>
<td>0.08</td>
<td>0.8-3.2</td>
</tr>
<tr>
<td>Vigna unguiculata</td>
<td>99</td>
<td>0.23</td>
<td>0.3-3</td>
</tr>
</tbody>
</table>

Food Processing can help to reach “target” consumers and create a “value chain” (Farmer-Processor-Consumer Chains)

Courtesy of H. de Groote (2016)
Low cost extrusion processing to generate quality products

Unit Operations
Conveying
Mixing
Shearing
Cooking
Forming
Drying and Cooling

Process flow

Whole Grain
↓
Mill to grits/meal
↓
Moisture addition and equilibration
↓
Extrusion: Temperature > 115°C
↓
Drying and milling extrudate
↓
Pre-cooked flour (3-8% M.C.)
↓
Extrudate (18% M.C.)
↓
Variety of products
Role of Technology Incubation Centers and Local Processors

NIGER
- Initiated “Incubation Center”
- Fully functional processors
- 2 Equipment fabricators
- Job opportunities

Kenya
- Initiated “Incubation Center”
- Partnership with Univ of Eldoret
- Training complete on extruder

SENEGAL
- Long and successful history of working with entrepreneurs
- New and improved products
- Training processors in Dakar
- Equipment fabrication hub
Hands on training on the extrusion: (Niamey Niger)
Evaluation of Solar Drying and Co-Extrusion of cereals and provitamin A rich plants to develop naturally fortified instant porridges

Evaluation of inexpensive solar drier for generation of vitamin A rich powders

Co-Extrusion of vitamin A fruits/vegetables with Millet

Mango

Carrot

42 °C
55 °C
65 °C

72-74% pVA recovery after drying

µg PVA carotenoids per g

0 200 400 600 800 1000 1200 1400

Raw Solar Thin Layer Deyhydrate

µg/g of sample

0 10 20 30 40 50 60 70

Control (extruded DS*) Co-extruded DS-carrot Dry blend DS-carrot

a b
Fortified instant cereal porridges with micronutrient rich African plant ingredients

Formulation (Sorguhm, Millet)
40-65%

Formulation (Mango:Carrot)
Target 25% DV for Vitamin A
30%

Cereal Blend
Sorghum Millet

ProVA Carotenoid Source
Carrot Mango

Mineral Rich Plant Materials

Pilot Formulation
Target 25% DV for Fe and Zn
5-25%

Ingredients in Dry Mix (%)

<table>
<thead>
<tr>
<th>Millet/Sorghum</th>
<th>ProVA source</th>
<th>Mineral source</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>45</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>

Product Quality
Nutrient Delivery (Bioaccessibility)
Consumer Acceptability
Interactions between plant materials may impact nutrient delivery

- Leverage established synergies:
 - Vit C in baobab and hibiscus to enhance bioavailability of cereal iron
- Potential for new synergies can be explored

<table>
<thead>
<tr>
<th>Sample</th>
<th>µg RAE</th>
<th>% RDA (1–3 y) 100g</th>
<th>% RDA (14–18 y) 100g</th>
<th>% RDA (1–3 y) 200g</th>
<th>% RDA (14–18 y) 200g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.88</td>
<td>3.63</td>
<td>1.55</td>
<td>7.25</td>
<td>3.11</td>
</tr>
<tr>
<td>Baobab (5%)</td>
<td>20.38</td>
<td>6.79</td>
<td>2.91</td>
<td>13.58</td>
<td>5.82</td>
</tr>
<tr>
<td>Baobab (15%)</td>
<td>30.50</td>
<td>10.17</td>
<td>4.36</td>
<td>20.33</td>
<td>8.71</td>
</tr>
<tr>
<td>Baobab (25%)</td>
<td>45.93</td>
<td>15.31</td>
<td>6.56</td>
<td>30.62</td>
<td>13.12</td>
</tr>
</tbody>
</table>
Working with local entrepreneurs is key to communication and ultimate success
In “auction” testing (200 mid-low income participants)
- No difference in preference between thick porridges
- Little difference in WTP without description
- After information is provided, consumers are willing to pay:
 - modest premium for instant flour
 - premium for added mango and carrot and micronutrients
 - Income increases overall WTP
 - Education increases WTP for instant flour

Products:
- A) traditional decorticated
- B) instant decort
- C) instant decort. flavored
- D) instant decort. fl. fortified w/ premix
- E) instant decort. fl. naturally fortified
Potential to leverage biofortified grains and tubers for such products

<table>
<thead>
<tr>
<th>Pearl millet variety</th>
<th>Iron content mg/100 flour</th>
<th>Contribution of one portion of porridge (125 g) to iron RDA of 4-5 year old consuming a vegetarian diet</th>
<th>Zinc content mg/100 flour</th>
<th>Contribution of one portion of porridge (125 g) to zinc RDA of 4-5 year old consuming a vegetarian diet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% of RDA</td>
<td>% of RDA</td>
<td></td>
</tr>
<tr>
<td>ICMB 92111 – Normal variety (ex. ISRA, Senegal)</td>
<td>4.79</td>
<td>1.5</td>
<td>7.5</td>
<td>3.40</td>
</tr>
<tr>
<td>Dhanashakti – Biofortified iron and zinc variety (ex. ICRISAT, India)</td>
<td>9.12</td>
<td>2.85</td>
<td>14.3</td>
<td>4.43</td>
</tr>
</tbody>
</table>

Data Courtesy of J. Kruger & J. Taylor (Univ. Pretoria)

http://www.icrisat.org/
Next steps and take away messages

• Embrace science and technology and local knowledge
• Understand the “consumer” and meet them where they are
• Look for opportunities for changes in products to meet nutrient needs in unique ways
• Foster partnerships with key entrepreneurs
• Push and pull for biofortified crops in real consumer products